MS051B Data-Driven Simulation of Flow and Multi-Physics Problems II
MS Corresponding Organizer: Prof. Alvaro Coutinho (COPPE/Federal University of Rio de Janeiro)
Chaired by:
Prof. Alvaro Coutinho (COPPE/Federal University of Rio de Janeiro , Brazil)
Prof. Alvaro Coutinho (COPPE/Federal University of Rio de Janeiro , Brazil)
Scheduled presentations:
-
Turbidity Currents Simulations in Channels with Different Slopes Using ROM-NN Models
R. Velho*, A. Côrtes, G. Barros, J. Camata, G. Guerra, R. Elias, F. Rochinha, A. Coutinho -
AI Model to Predict in-situ Relative Permeability of Rock Formation
S. Zhong, X. Ge, H. Thomas, C. Li* -
The Role of Provenance Data in Physics Informed Machine Learning
L. Oliveira, D. Pina, L. Kunstmann, D. Oliveira, M. Mattoso* -
Implicit Neural Representation For Accurate CFD Flow Field Prediction
L. de Vito*, N. Pinnau, S. Dey -
A Novel Data-based Strategy for RANS Wall Models Inspired from Dirichlet-to-Neumann Map
M. Romanelli*, S. Beneddine, I. Mary, H. Beaugendre, M. Bergmann, D. Sipp -
Field-inversion analyses for machine-learning applications of compressible RANS computations in a discontinuous Galerkin framework
B. Fanizza*, P. Stefanin Volpiani, F. Renac, D. Sipp -
A machine learned near-well model in OPM
P. von Schultzendorff*, J. Both, J. Nordbotten, T. Sandve, B. Kane, D. Marban