MS148A Advances in machine learning for composite materials I
MS Corresponding Organizer: Dr. Mohsen Mirkhalaf (University of Gothenburg)
Chaired by:
Dr. Mohsen Mirkhalaf (University of Gothenburg , Sweden) , Dr. Iuri Rocha (Delft University of Technology , Netherlands)
Dr. Mohsen Mirkhalaf (University of Gothenburg , Sweden) , Dr. Iuri Rocha (Delft University of Technology , Netherlands)
Scheduled presentations:
-
Machine-Learning-Based Surrogate Material Models For Elasto-Plasticity And Elasto-Damage
C. Fricke*, M. Luxner, L. Peyker, L. Mitrovic, H. Pettermann -
Effective application of hybrid material modeling for topology optimization of multiphase hyperelastic composites
H. Vijayakumaran*, J. Russ, G. Paulino, M. Bessa -
A Microstructure-based Graph Neural Network for Accelerating Multiscale Simulations
J. Storm*, I. Rocha, F. van der Meer -
Improving the Production Accuracy of the Tailored Fiber Placement Process Through a Machine-Learning Algorithm
L. Bittrich*, E. de Menezes, M. Woestmann, A. Miene, L. Echer, A. Spickenheuer -
Machine learning model for correlating microstructural features and macroscopic properties of heterogeneous composites
C. Shen, H. Zhao*, R. Mu, A. Wang, K. Wang