ECCOMAS 2024

Approximation of acoustic black holes with finite element mixed formulations and artificial neural network correction terms

  • Fabra, Arnau (Universitat Politècnica de Catalunya)
  • Guasch, Oriol (La Salle)
  • Baiges, Joan (Universitat Politècnica de Catalunya)
  • Codina, Ramon (Universitat Politècnica de Catalunya)

Please login to view abstract download link

Wave propagation in elastodynamic problems in solids often requires fine computational meshes. In this work we propose to combine stabilized finite element methods (FEM) with an artificial neural network (ANN) correction term to solve such problems on coarse meshes. Irreducible and mixed velocity-stress formulations for the linear elasticity problem in the frequency domain are first presented and discretized using a variational multiscale FEM. A non-linear ANN correction term is then designed to be added to the FEM algebraic matrix system and produce accurate solutions when solving elastodynamics on coarse meshes. As a case study we consider acoustic black holes (ABHs) on beams and plates. ABHs are traps for flexural waves based on reducing the structural thickness according to a power-law profile at the end of a beam, or within a two-dimensional circular indentation in a plate. For the ABH to function properly, the thickness at the termination/center must be very small, which demands very fine computational meshes. The proposed strategy combining the stabilized FEM with the ANN correction allows us to accurately simulate the response of ABHs on coarse meshes for values of the ABH order and residual thickness outside the training test, as well as for different excitation frequencies.