MS163B Scientific Machine Learning - A catalyst for algorithmic performance in industrial computer aided engineering II
MS Corresponding Organizer: Dr. Dirk Hartmann (Siemens Industry Software GmbH)
Chaired by:
Prof. Thomas Richter (Otto-von-Guericke Universität Magdeburg , Germany) , Dr. Dirk Hartmann (Siemens Industry Software GmbH , Germany)
Prof. Thomas Richter (Otto-von-Guericke Universität Magdeburg , Germany) , Dr. Dirk Hartmann (Siemens Industry Software GmbH , Germany)
Scheduled presentations:
-
Thermal Monitoring in Electric Machines using Physics-informed Neural Networks
H. Sauerland*, S. Sreekumar -
Reduced Order Modelling in CFD: Geometry, Turbulence and Compressibility enhanced by Scientific Machine Learning
G. Rozza* -
Domain decomposition for neural networks
A. Heinlein* -
An Operator Learning Framework for Mesh-Free Spatiotemporal Super-resolution
V. Duruisseaux, A. Chakraborty* -
Scientific Machine Learning for Closure Models of Multiscale Problems - a Differentiable Physics Approach
B. Sanderse*, S. Agdestein, T. van Gastelen -
Data-driven identification of low-dimensional port-Hamiltonian Systems
J. Fehr*, J. Rettberg, J. Herb, J. Kneifl, P. Buchfink, B. Haasdonk