
MS108A Facing the challenges of high order methods for hyperbolic PDEs I
MS Corresponding Organizer: Dr. Maria Han Veiga ( Ohio State University , United States )
Chaired by:
Dr. Maria Han Veiga ( Ohio State University , United States ) , Mr. Lorenzo Micalizzi ( North Carolina State University , United States )
Dr. Maria Han Veiga ( Ohio State University , United States ) , Mr. Lorenzo Micalizzi ( North Carolina State University , United States )
Scheduled presentations:
-
Keynote
Discrete fully well balanced WENO finite difference schemes via a global-flux quadrature method
M. Kazolea*, C. Parés, M. Ricchiuto -
Structure preserving methods via Global Flux quadrature: divergence-free preservation with continuous Finite Element
D. Torlo*, W. Barsukow, M. Ricchiuto -
An arbitrarily high-order fully well-balanced hybrid finite element-finite volume method for one-dimensional blood flow models
R. Abgrall, W. Barsukow, Y. Liu* -
Efficient Tsunami Modeling with Hyperbolic-Dispersive Systems in GeoClaw
C. Muñoz*, M. Berger, D. Ketcheson, R. LeVeque, K. Mandli -
A General Procedure To Construct High-Order Well-Balance Finite Volume Schemes For 1D Hyperbolic Balance Laws With Singular Source Terms
M. Castro*, I. Gómez Bueno, C. Parés Madroñal