ECCOMAS 2024

Keynote

A scheme for crack nucleation in the phase field approach to fracture

  • Chen, Yihao (Shanghai Jiao Tong University)
  • Shen, Yongxing (Shanghai Jiao Tong University)

Please login to view abstract download link

Due to the polyconvexity of the phase field formulation for fracture, starting from a crackless solid, a standard Newton iteration may lead to a solution with no crack, even though a cracked solution has a lower total energy. As such, the critical load for cracking is highly overestimated. Here, we propose an algorithm termed “parallel universe” algorithm to capture the global minimum. This algorithm has two key ingredients: (a) a necessary condition for cracking solely based on the current crackless solution, and (b) beginning from when this condition is met, Newton iteration with two initial guesses, a crackles one and a cracked one, will both be performed and the converged candidate solution with lower energy is accepted as the solution at that load step. Once the cracked candidate solution is accepted, the crackless one is discarded, i.e., only one universe is retained. This cracked initial guess is obtained only once for all load steps by solving a series of similar minimization problems with a progressively reduced critical crack energy release rate. Numerical examples with isotropic and anisotropic critical crack energy release rates indicate that the proposed algorithm is more reliable (as there is no need to retrace) and more efficient than the standard Newton iteration and a well-known backtracking algorithm. More details can be found in [Chen, Shen, Computer Methods in Applied Mechanics and Engineering, 403 (2023) 115708].