ECCOMAS 2024

MS111 - Advances in numerical methods for atmosphere and ocean dynamics simulations

Organized by: M. Girfoglio (SISSA, Italy), A. Quaini (University of Houston, United States) and G. Rozza (SISSA, Italy)
Keywords: atmospheric flows, geophysical fluid dynamics, ocean flows
Forecasting the rapid changes in the Earth’s climate is one of the biggest challenges of our times. Fast and accurate weather/climate/ocean dynamics forecasts need state-of-the-art numerical and computational methodologies due to the high computational complexity of solving systems described by partial differential equations. This minisymposium is about the development and application of computational approaches in the field of geophysical fluid dynamics [1, 2, 3, 4, 5]. The focus is on efficient numerical techniques, including high-fidelity finite elements, finite volumes, discontinuous Galerkin and spectral elements methods as well as reduced order models to deal with complex phenomena arising in ocean and atmospheric flows. Examples of these phenomena are turbulence, compressibility and multi-phase interfaces. Efficient and accurate numerical methods for real world applications have undergone fast development during the last decade and have become a new frontier in scientific computing. This minisymposium will discuss the most recent development and identify new directions and perspectives. REFERENCES 1. M. Girfoglio, A.Quaini, and G. Rozza, Validation of an OpenFOAM-based solver for the Euler equations with benchmarks for mesoscale atmospheric modeling, AIP Advances, 13, p. 055024, 2023. 2. M. Girfoglio, A. Quaini and G. Rozza, A novel Large Eddy Simulation model for the Quasi-Geostrophic Equations in a Finite Volume setting, Journal of Computational and Applied Mathematics, 418, p. 114656. 2023. 3. M. Girfoglio, A. Quaini and G. Rozza, A linear filter regularization for POD-based reduced order models of the quasi-geostrophic equations, Comptes Rendus Mècanique, 351, p. 1-21, 2023. 4. N. Clinco, M. Girfoglio, A. Quaini and G. Rozza, Filter stabilization for the mildly compressible Euler equations with application to atmosphere dynamics simulations, https://arxiv.org/abs/2305.12978, 2023. 5. M. Girfoglio, A. Quaini and G. Rozza, GEA: a new finite volume-based open source code for the numerical simulation of atmospheric and ocean flows, https://arxiv.org/abs/2303.10499, 2023.